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Pure latticeSU(2) Yang-Mills theory in five dimensions is considered, where an extra dimension is com-
pactified on a circle. Monte Carlo simulations indicate that the theory possesses a continuum limit with a
nonvanishing string tension if the compactification radius is smaller than a certainRsgludich is O(1/10)
of the inverse of the square root of the string tension. We verify nonperturbatively the power-law running of
the gauge coupling constant. Our method can be applied to the investigation of continuum limits in other
higher-dimensional gauge theories.

PACS numbgs): 11.10.Hi, 11.10.Kk, 11.15.Ha, 11.25.Mj

I. INTRODUCTION five dimensions on a latticevhich indicated that the theory
have no continuum limjtwere performed in the uncompac-
The idea of unifying fundamental forces by introducing tified case. These workd4,15 were motivated to investi-
extra dimensions has attracted attention for many decadegate whether or not the nontrivial ultraviolet fixed point
and the theory realizing this idea is called Kaluza-Kleinfound in thee expansion16] is real.
theory[1]. Recently, it has been observed by Arkani-Hamed, To be more specific, we consider pB&J(2) Yang-Mills
Dimopoulos, and Dvali2] that the existence of extra dimen- theory in five dimensions where an extra dimension is com-
sions may play an important role in understanding the hierpactified on a circl&Swith the radius oR. (It would be more
archical scales that exist between the weak and Planckrealistic” to compactly the fifth dimension on the orbifold
scales. From a simple setting that only the graviton carg/Z, so that the zero modes contain only four-dimensional
propagate in the bulk corresponding to the extra dimensiongauge fields and no scalar fields. We leave the castézf
while all the other fields of the standard mod&M) are  to future work) One may expect that the theory will carry
located on a four-dimensional wall, they have conclupggd the basic property of a four-dimensional gauge theory if the
that the length scale of the extra dimensions can be ratheadiusR is sufficiently small, while in the opposite limit d&&
large =10 2 cm. (A similar observation was previously the theory becomes more five dimensional. So there may be
made in Ref[3] in connection to supersymmetry breaking in the maximal radiu®,, below which the theory can possess a
string theory). This should be in contrasted to the situation in continuum limit with a nonvanishing string tension and can
previously suggested Kaluza-Klein theories in which the sizeexist nonperturbatively. We will indeed find that our numeri-
of extra dimensions was of the order of th@dour- cal simulations based on a compactified lattice gauge theory
dimensional Planck length 103 cm or IM g r~10"°cm,  are supporting the correctness of this heuristic picture.
where Mgyt is the unification scale in four-dimensional  The string tension is one of the most familiar physical
grand unified theorie€GUTS). Their idea has been then fol- quantities, which can give a physical scale to the lattice spac-
lowed and extended by several authpts] to obtain more ing. However, at a deconfining phase transition of first order,
satisfying solutions of the hierarchy problem. Moreover, thethe string tension vanishes discontinuously, and we cannot
above phenomenological proposal to confine fields on ase it for that purpose in this case. One of the crucial obser-
lower-dimensional subspace fits w¢ll—10] the D-branes vations in this paper is that, if the fifth dimension is compac-
[6] (extended objects attached by the end points of opetfified, the first order phase transition changes its nature at a
stringg in string theories. certain compactification radius. We will see this on aniso-
If part of the SM fields can propagate in the bulk, and thetropic lattices by performing Monte Carlo simulations with
size of the extra dimensions are large, the existence of suakarious compactification radii and by investigating the phase
extra dimensions may be experimentally verified. There willstructure. The simulations also indicate that it could be pos-
be a number of phenomenological questidgsse Ref[11], sible to give a physical scale to the lattice spacing even in the
for instance such as “ what are the experimental bounds ondeconfining phase if the theory is compactified, and this pos-
the size of the extra dimensiof$2]?” However, our con-  sibility will be studied more in detail.
cern in this paper is of a theoretical nature: Is the existence of We will assume that the phase transition due to the com-
a large extra dimension consistent with quantum theory? Oupactification occurs at a certain valueRfthe critical com-
answer to this question will be “yes,” provided that the pactification radiuskc, and that the compactification radius
compactification radiuR is smaller than a certain value, the is kept fixed atR along the critical line of the phase transi-
maximal radiusk, . It should be emphasized that the previ- tion due to the compactification. That is, the critical compac-
ous investigationf13—15 on non-Abelian gauge theories in tification radiusR: is assumed to be a physical quantity.
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This assumption enables us to compute the lagii¢enction Up,=U,.(X,y)

for a givenR as a function of the lattice spaciray, of the !

four-dimensional direction. In doing so, we can verify non- =U,(x,y)U,(x+ asn,y)

perturbatively the power-law running of the gauge coupling A

constantg, and find that the observed power-law behavior XUL(x+ a4v,y)UI(x,y),

fits well to the one-loop form suggested in R€f8,16—23.

The results for the latticg8 function obtained from our Up5=UM5(x,y)

Monte Carlo simulations indicate the self-consistency of the

assumption above. =U,(X,y)Us(x+ asm,y)
The results obtained for the lattiggfunction can also be N N

used to make a further assumption on the physical scale in XU, (x,y+as)Us(X,y). (2.2)

the deconfining phase and to investigate various scalinq, i i i )
properties of the longitudinal Creutz rat[defined in Eq. | "€ Wilson action for pureSU(Nc) Yang-Mills theory in
(4.1)], making a discussion on the existence of continuundiV€ dimensions is given by
limits of the theory possible. We will be led to the interpre- 1
tation that the theory may possess a continuum limit with ag= ,342 +,352 {1_ —Re TrUp }
nonvanishing longitudinal string tension if the compactifica- Nc
tion radiusR is smaller thanRy,~R/3, and that the non- (2.3
trivial uItravir?Iet fixed pointI found ti)n the expansion in the where Sp =S, _, and Sp.=3,_._, Periodic
continuum theory may no longer be spurious. 4 SHSvS 5 sus4

After we def|r¥e ou); Iattlcegactlon |rF1) Sec. I, we start to Poundary conditions are imposed in all directionghe
present the details of our calculations. In Sec. Il we calcuCOUPling- and correlation-anisotropy parameters are defined

late the ratio of the lattice spacings-a,/as in terms of the @S

1
1- N—Re TrUp,

parameters of the simulatiogs and y, and then we discuss a
the phase structure in Sec. IV. In Sec. V we compute the - A /’85, E= - (2.4
lattice B function and then study on continuum limits in Sec. B as

VI, and the last section is devoted to conclusions. . . . .
wherey= ¢ is satisfied in the tree level. In the naive continue

limit a4,a5— 0 with the length of the fifth dimension fixed at
27R, the action(2.3) becomes

In order to investigate the effects of a compactification in _ -3 n Bsa; T F2 |1 0(a5
the five-dimensionalSU(2) gauge theory, it is crucial to 2Nc Sv (@),
employ an anisotropic lattice which has different lattice (2.5
spacingsa, andas in the four-dimensional directions and in
the fifth direction, and is often used in the case of latticewhich goes to
gauge theories at finite temperature. We find that the effects
of the compactification on an isotropic lattice can appear 4 [P, —1 )
only for a small lattice size of the fifth directionr<(2) so that f d f dy; TrFEun (2.6
it is practically impossible to study the theory with different 9s
sizes of this direction. Another advantage is that, since wey _ 2
can varya, andas independently, we can investigate thge p & ZaNCaF’/gF’
dependence of physical quantities while keepmgfixed. =95Am T, Fun=duAn—InAu—ilAu, An], and we have

used
This enables us to study scaling properties in the compacti-
fied theory for a given compactification radils (X,y)=€l9530Au(Y) g (x,y) = el9sasAs(xy).

We denote the five-dimensional lattice coordinategzhy a 2.7
(M=1,...,5), the four-dimensional ones bk,(u
=1,...,4), and the fifth one by The link variable takes the On a lattice a compactification means if
form

II. THE ACTION

and Bs=2Ncai/géas, where Ay,

N4a4 a4N4
N5a5 27TR N5

ey 2.9

Upn(6Y) ={U () =U(XYiX+agu,y), S _
is satisfied. Note that the gauge coupling constgras the

dimension ofy/a,, and can be expressed as
Us(X,y)=U(X,y;X,y+as)}, (2.2

1Another interesting case, i.e., orbifold boundary conditions which
where U(z;;2,) e SU(N¢) is the parallel transporter. The kill the scalar zero mode, can be archived by impoding,y;x,y
plaquette variables are +ag)=UT(x,—y—ag;x,—y).
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. B TABLE I. &-v relation.

95 = 5N B=B4Ps. 2.9 ——
c4 Y I3 B-range lattice size
Later on we will use a dimensionless coupling constant 1.50 1.43857) 1.51868-1.66565 816
2.00 1.78450) 1.55563-1.69706 816
_ _ NsB 3.00 2.34040) 1.59349-1.73205 816
97*=(27R)gs 2:2NC§’ 210 400 2.77934) 1.60000-1.75000 816
5.00 3.16139) 1.65469-1.74413 B<16
which is normalized for the four-dimensional Yang-Mills 6.00 3.49033) 1.61666-1.76363 8<20
theory with the tower of the Kaluza-Klein excitations. At this  8.00 4.06239) 1.62635-1.76777 824
point, Eq.(2.10 is only a tree-level definition. 10.00 4.61735) 1.50208-1.73925 B 24
16.00 5.9281) 1.50000-1.70000 832
ll. &y RELATION

The parameters of the simulations #and+y for a given  where we have allowed the presence of the fa&towWe
size of lattice, and the lattice spacings andas are func-  measure the ratios for a given set of the lattice g@zand y,
tions of these parameters. The introduction of an anisotropgind assume that they take the form
into a lattice means that the regularization bre@K$) in-
variance of the continuum theory. To recover this symmetry R(X,,a4n,) ~Kiexp{ — o4ny}
we have to fine tune the anisotropy parameteiand ¢ that
are defined in Eq(2.4). At the tree level, it isé=y as we and
have seen in the previous section. In higher orders the tree-
level relation suffers from quantum corrections so that it can R(X,, ,asNs) ~k.exp{ — osns}, (3.9
depend orB and vy, i.e., é=&(y,B8). The basic idea to find
the corrected relation, which has been intensively used in th
study of QCD at finite temperature, is to use that symmetry
There are variants of the method, and we have decided to u
a slightly modified method that is based on the matching o
the Wilson loop ratio[24—-26. Let us briefly explain the
method below.

We consider two kinds of Wilson loop#/(zy, ,zy), the
oneW(x,, ,x,) within the four-dimensional subspace and the
other oneW(x,, ,y) that is extended into the fifth dimension,
and calculate the ratios

and that they should become identical with each other, by
gymmetry, whenn a,=ngzas. From this consideration we
obtain é=a,/as=o0,4/05. Note that the ansat@3.5 has a

eaning only in the confining region of the parameters, of
course.

In the practice, we fit the ansat3.5 for the data, and
then scalens by z (i.e., ns—zn,) in such a way that
R(x, ,zasn,) becomes closest ®(x,, ,a;n,), where we as-
sume thatkk=1 on the right-hand side of E43.4).2 In the
ideal case we would have= o, /0,=¢.

To restore theD(5) symmetry in an efficient way, simu-
lations are performed using the heat bath algorithm on the

WX, +aqp.X,) lattice of N4 X N5, whereNs~ yN,, is satisfied as shown in

R(X, ,X,)= ; i :
W(x, ,X,) Table I. We generate 5000 configurations, and Wilson loops
are measured every 5 configurations. Figure 1 shéwer-
and sus B for various values ofy, and we see thaf is almost
R independent of3. The data points for larges are not plotted
W(X,+asu,y) because they correspond to the deconfining region so that the
R(Xu1Y) = WX,y (3.3) ansatz(3.5 has no meaning. The same data are plotted in
. Fig. 2 which shows they dependence of. The data are
Since the Wilson loop is related to the static quark potentiaPummarized in Table I. The central valuein the table is
as the average of the data points in Fig. 1 for a fixed
W(zy ,zy) ~expl—zyV(zy)} for zy—o, (3.2 IV. PHASE STRUCTURE
we find that the ration€3.1) for largex andy become In this section we would like to investigate the phase

structure of the five-dimensional theory defined by the action

R(XM!XV)NeXp{_a4V(XV)}! R(X,uiy)NeXp[_a4V(y)}'
(3.3
20n a lattice where one can obtain more data points, it is more
The O(5) symmetry of the continuum theory requires thenconvenient to use the method developed in 28] for QCD, in
that which k is different from 1. In our case, due to the size of our
lattice, we cannot obtain enough number of data points. In such a
R(x,,x,)=kR(x,,y) for x,=n,a,=y=nsas, casek=1 is a reasonable assumption, as has been discussed in Ref.
(3.9 [25].
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FIG. 1. B dependence of the anisotropy parameter FIG. 2. Relation betweed and y.

Ejzifr?)énléilnsnglr]?;t\{[?cgog]uthee th:oar?e;I?Ld n?giyizgr}ibpgge;gimensional subspaces, because we are interested in the con-
. 1C€ gaug . : finement property in this subspace. We would like to dem-
sions have a first order phase transitfolihe studies of

Monte Carlo simulation§13,14 also indicate that in the onstrate that the Creutz ratio behaves differently for different

S U(2 th the first order t it types of lattice. The results obtained from Monte Carlo simu-
S;S:inog atlg—) sgagg? tasekoirg to eexltresn(;)rthzrserzrrlwszilif)sr:egiglﬁlselaﬁons on an isotropic lattice of size §y*=1.0) and on an
=5 . . . a2l 2_
compactified theory. To this end, we will be intensively us—"JInISOtrOpIC lattice of the same sizg”=2.0 andy*=4.0)

. ) . " ; ~.are shown in Fig. 3, where the vertical axis stands for the
ing anisotropic lattices to take into account the compactifi- . . .
: : . : Creutz ratio, and the horizontal axis stands B \848s.
cation of the fifth dimension. . ) \ .
We have generated 2500 configurations for each simulation

point after thermalization, and Wilson loops are measured
every 5 configurations for the calculation of the Creutz ratio.
The string tension between two quarks that are separated We see from Fig. 3 that the phase transition between the
in space is a typical physical quantity for the theory. Whatconfining and deconfining phase exists aroysw 1.64 in
we know from experiments is that the string tensieg,s  the case of the isotropic latticeyf=1.0) as it was found in
between two quarks that are separated in the fourRefs.[13,14] and around3~1.73 and 1.77 in the cases of
dimensional subspace should be nonvanishing so that thg?=2.0 and 4.0, respectively. We have performed the simu-
potential between them is linearly increasing with the dis-lations starting with an ordered configuration with,=1
tancer. The string tension is a good physical quantity for
defining a physical scale for other quantities obtained in lat- 15
tice gauge theories. If the underlying gauge theory is formu-
lated in five dimensions, however, the feature of the linearly
increasing potential is not automatically present, and in fact,
the first order deconfining transition is found in Refs.
[13,14. 1.0
We measure the Creutz ratidi,j) defined as

A. Longitudinal Creutz ratio

WG WG-1§-1) =
D= i owa-1p o 4

whereW(i,j) is a rectangular Wilson loop with lengths of
andj. The Creutz ratio with largeandj becomes the lattice
string tensionoy in the case of the linearly increasing po-
tential between two quarks. So, if a Creutz ratio with large
andj takes a nonzero value, the corresponding Wilson loop
shows the area law which we regard as “confinement.” We 1.5 1.6 1.7 1.8 1.9
consider the Wilson loops longitudinal to the four-

FIG. 3. Creutz ratios as a function gffor 72= 1.0, 2.0, and 4.0
on an & lattice. Open symbols are the results of the ordered start
3See for instance Ref27], and references therein. and filled symbols are those of the disordered start.
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FIG. 4. Expectation values of the transverse Polyakov loop on FIG. 5. Expectation values of the plaquette on arldtice for
an & lattice for y¥*=1.0, 2.0, 3.0, and 4.0, and those on & 8 7?=1.0, 2.0, 3.0, and 4.0, and those on &¥xa2 lattice for y?
X 12 lattice fory?=86.0. =6.0.

[defined in Eq.(2.1)] and with a disordered configuration, C. Compactification effects

thereby obtaining clear hysteresis curves. The open symbols |1 may be worth pointing out that the compactified (
are the results of the ordered start and the filled symbols are 1)_gimensionalSU(N) lattice gauge theory belongs to
those of the disordered start. Our results indicate that thg,e same universality class as BalimensionalZ(Nc) spin
transitions are of first order, in accord with the finding of ,odel. The case of QCD at finite temperatdiés a well-

2__ . . . .

Refs.[13,14 for y°=1.0. known example, where the temporal direction is compacti-
fied with the lengthT ~1. We expect the existence of a simi-

B. Transverse Polyakov loop lar phase transition due to the compactification in our case,

which is of second order, because the phase transition in the

. In the upcqmpacuﬂed case, the Polyakov Ioop. plays thGfour-dimensionaZ(Z) spin modellsing mode] is of second
role for an indicator of confinement. Here we consider loops

which are transverse to the four-dimensional subspace arg der. So, we repeat the measurements of the transverse
) P olyakov loop (4.2 and the average of plaquette for the
define the transverse Polyakov loop as

compactified case.
1 1 In order to take into account the compactification of the
L=z— Z — Tr H Us(X,Y), (4.2 fifth dimension, we use anisotropic lattices of siZe<@l and
4 X Nc y 84X 6. The results for the transverse Polyakov loop with
different y are shown in Figs. 6 and 7In Fig. 6 we have
wherez is aZ(N¢) phase factorf\c=1) such that arg() included the result on a $X4 lattice which shows that
e (—m/N¢,m/N¢). In contrast to the longitudinal Creutz there are practically no finite size effegtsloticing that the
ratio (4.1) which we have discussed in the previous subseccompactification radiuR(=Nsas/27) becomes smaller for
tion, the transverse Polyakov lodg.2) has no direct physi- a givenNs asy becomes largefsee Fig. 2 and Tablg,Iwe
cal meaning in four dimensions, because we do not identifpbserve that the nature of the phase transition changes due to
the fifth direction with the temporal direction. We may say the compactification. Namely, the interval gfin which two
however that the quark currents running into the fifth direc-phases coexist becomes narroweryascreases, and there
tion are confined if the transverse Polyakov lodp van-  are no intervals fory’=2 for the 8'x4 case and fory”
ishes. =4 for the & X 6 case, respectively. These phase transitions
Figure 4 shows the results of the transverse Polyakov loopeem to be of second order. Observe also that the transition
on the & and & x 12 lattices for various values of, while,  interval of g for ¥?=1.0 does not depend dxs, while, in
for comparison, the average of the plaquettex (1Wilson  contrast to this, the transition poigt; for the second order
loop) for the same lattices is shown in Fig. 5. 2500 configu-transition for a giveny depends oNs. From these results,
rations have been used to measure the Polyakov loop and thee conclude that the second order phase transition is caused
plaguette for each point. As in the previous subsection, théy the compactification, and that the first order transition is
open symbols are the results of the ordered start and theot related to the compactification. In Figs. 8 and 9, we plot
filled symbols are those of the disordered start. As expectedhe average of the plaquettes for th&x84 and &x6 lat-
we obtain clear hysteresis curves, and so the transvergiees. The results show that the transition becomes weak
Polyakov loop and the average of the plaguettes also indicatsimilar to a cross over transitipistarting aty at which the
that the phase transition is of first order. first order transition of the transverse Polyakov loop turns to
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FIG. 6. Expectation values of the transverse Polyakov loop on FIG. 8. Expectation values of the plaquette on 4ix 8 lattice.
an 8x 4 lattice. The star symbols are the results on $xI2 lat- The star symbols are the results on 442 lattice.
tice.

in QCD at finite temperature, which is defined by the spatial

be of second ordefIn Fig. 8 we have included the result on Wilson loop, and indeed is nonvanishing even in the decon-
a 12x 4 lattice to make it sure that finite size effects arefining phase[28]. Figure 11 shows the longitudinal Creutz
negligible) ratio versusg for the anisotropic lattice of size*& 4 with

In Fig. 10 we show the qualitative nature of the phasey? fixed at 4.0. The figure shows that the longitudinal Creutz
structure in theB,-Bs plane, which we have obtained from ratio varies smoothly ag enters into the deconfining phase
the result of this section. The *“confining” and “deconfin- of the transverse Polyakov loop, indicating that it could be
ing” phases are separated by the critical lines of the first angbossible to give a physical scale to the lattice spacing even in
second order phase transitions. The position of the criticathat phase. Since indeed the spatial string tension is known to
line (bold line) of the first order phase transition does notobey a scaling law at high temperatyigs], we may wonder
depend on the lattice size, while that of the second order on&hether some continuum limit in the present might also ex-
(solid line) depends crucially oNs. Below the critical line  ist. The following sections are devoted to investigate this
in the B4-Bs plane, the transverse Polyakov loop vanishespossibility from another point of view.
and it is different from zero above the line. Note that this In the case of QCD at finite temperature, the critical tem-
does not necessarily mean that the longitudinal Creutz ratiperatureT¢ is a physical quantity. As in that case, it is well
(4.1 vanishes in the deconfining phase. The longitudinalpossible that the critical compactification radii: is a
Creutz ratio(4.1) corresponds to the “spatial string tension” physical quantity, and that the lattice system on the different

0.60 T T T T 0.60 T T T T

0.55

<L>

A
0. 0.50
v

0.45

[

0.40 T— L L
1.60 1.65 1.70 1.75 1.80

FIG. 7. Expectation values of the transverse Polyakov loop on FIG. 9. Expectation values of the plaquette on &8 lat-
an 8x6 lattice. tice.
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(Non—compact) 50 where.§C:a4/a5C. Th.ese values are consistent wﬁh the. as-
<L>>0 - sumption that the lattice system on the different critical lines
v second order transition

7 forNs=6 corresponds to the same physical system. Equai@ also

second order transition

for N=4 means that the value &f, at which the first order phase

/ first order transition

Bs Bs transition appears is approximately independentyofndi-
650 cating that this value might have a sensible meaning. In the
<L>=0 next section, we will do another check by using the latfice
first order transition function.
Bs Bs V. THE LATTICE B FUNCTION

FIG. 10. lllustrations of the phase structure for the noncompac- We are interested in physics in the four-dimensional sub-
tified case(left) and the compactified cageght), whereo is the  space with a certain compactification radius. The anisotropic
longitudinal Creutz ratio and is the transverse Polyakov loop. lattice we have used in the previous section is convenient for

computations with differené, while keeping the compacti-
critical lines in theg-vy plane for differeniNs corresponds to  fication radius constant. In this section we would like to
the same physical system. As a first check, we estimateompute the latticgg-function in the four-dimensional sub-
roughly the critical radiusRc for two critical lines of the space with the compactification radigsfixed at a certain
second order phase transition at the end point. As mentionedalue
(see also Fig. 16 at y~ /2.0 for Ns=4 and aty~2.0 for .
N5=6, the second order transition line merges in the first B= —a d_g 5.1)
order transition line. The value @f at the merging points, lat ‘da,’ '
respectively, is 1.78 foy= /2.0 and 2.78 fory= 2.0, where
we have used the data in Table I. From the data on th&hereg=gs/\27R is the four-dimensional, dimensionless
Creutz ratio for the Blattice (Fig. 3), we find that the value gauge coupling. We will calculate in Sec. V B tBefunction
of the longitudinal Creutz ratio at the transition points isat the critical compactification radilRc using two lattices

approximately constant independentxyfi.e., with different N5, whereNg also corresponds to the number
) of Kaluza-Klein excitations. So, if the theory we investigate
Tjat= Ophy4~0.7, (4.3  should be regarded as a four-dimensional theory with only a

) ) o S few number of Kaluza-Klein excitations, thg-function
where we identify the longitudinal Creutz ratjg(i,j) with should depend explicitly oMs. On the other hand, if we
largei and] as the lattice string tensiam. Using this, we  optain the same latticg-function for differentNs, we are
find indeed dealing with a five-dimensional theory, and fimite
12 or equivalently finiteas effects may be regarded as negligi-

R :N5a5c% Ns | 0.7 bly small. First we would like to check this point. Another
€ 27 2mwEc| Ophys motivation is that we would like to examine non-
perturbatively the celebrated power behavior of the running
0.30Nopnys, . | Ns=4, of the gauge couplings in higher dimensions, which we will
=~ O.Zglmfor N5=6, (4.4 use in the next section to give a physical scale in the decon-
fining phase of the transverse Polyakov loop and then to
15 i . . discuss the scaling behavior of the longitudinal Creutz ratio
4.7).

Since the gauge couplirgand the lattice3-function B4
are dimensionless, we may assume that the lattice spacings
a, andas enter only in the combinatiog=a,/as. Further-
more, the perturbative analyses and also the discussion that
follows below suggest that the correct variable is

27N 27Ngas (27)°R
S= = = i
& ay ay

(5.2

This choice of the parameter has a nontrivial meaning: We
may conclude that, ifjy really depends only os, the con-
tinuum limit as— 0 with the compactification radiuR fixed

can be taken, ant can be regarded as a physical quantity in
0.0 : . . this sense.

’ ’ ’ ) In the case of QCD at finite temperature, the critical tem-
peratureT is a universal quantity. The analogy for our case
FIG. 11.  Creutz ratios on an*& 4 lattice aty?=4.0. would be that the critical radiuR. is a universal quantity of
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the theory. So, the compactification radius would remain 200 T T T T T
constant along the critical line in the-y plane. However,
there is a crucial difference compared with the case of QCD #=16.0 =25
at finite temperature, because the critical lines in the presen ’ F=6.0 3.0
case merge into the region of the first order phase transitior 150 F ¥=8.0
which is not related to the compactification. Therefore, this b
assumption is not reliable in the region in which the transi-
tion is of the first order. - 10
Keeping these circumstances in mind and defining the™
gauge coupling as

N

_ _ 5 Bc 50 |
9 *=2mRe0s =7 (5.9
on the critical line of the second order phase transitiore L
can rewrite Eq(5.1) as 0-00.8 10 12
= dinR¢ B
lat™ a1~ dina, FIG. 12. B8 dependence of the Polyakov loop susceptibility ob-
tained by the histogram method on af® lattice with y?=2.1.
with The circles denote the simulation point.
Eat:isi i(s) - 4¢ _ i % d_y} tions. The results are plotted in Fig. 12 fde=4 and in Fig.
N5 ~ds| Bc NsBc|™ Bc dy d¢ 13 for Ns=6. The large peak height 3=2.0 for the &

(54 x4 Jattice and aty’=3.6 and 3.8 for the 8x 6 lattice (see
where use have been made of E@4), (2.9, and (2.10. Fig. 14 signals the first order transition which we have seen

— , , s in the previous subsection. In Fig. 15, we see flip-flop in the
Here, we denot@,, for the 8 function with the assumption  hstory of the plaquette values, which is another sign for the

that theR¢ is constant along the transition line. If there is no fj;st order phase transition. The transition po@it and its
a, dependence oRc, this assumption is correct so that gerjvative ¢8./dy for a giveny are given in Table II. Here,
Biar= Biat- the derivative of a transition point is calculated by fitting the
Note that the critical lines in thg-y plane are different continuousy dependence o with the polynomial
for differentN;s. In Eq. (5.3 we are implicitly assuming that
g does not depend on which critical line we use to calculate
it. If we obtain the same gauge coupling from the different Nmax
lines, it is a sign that the critical lattice systems for different Bcly)= E foly—v0)" (5.6
Ng describe the same physical system. This will be checked n=0
in Sec. VB.
15.0 T T T r

A. Precise determination of the critical lines ’ .
¥=16.0 v=8.0

To compute the latticg function B,,; using Eq.(5.4), we q 0] @ v¥=4.0
need to know precisely the location of the critical points and ¢ ¥=10.0 P
its derivative with respect toy in the 8-y plane. Let us 10.0 | i
therefore determine the critical lines in tifey space next.

To this end, we identify the transition point with the position
of the peak of the susceptibility =

X =Nz((LA—(L)?), (5.9 50 | :

whereL is the transverse Polyakov loop defined in E42).

We apply the histogram methd@9] extended to an aniso-
tropic lattice to evaluate the continuous parameter depen
dence ofy,, as it was done in Ref.30]. To measure the 0.0 s :
Polyakov loop susceptibility, we take 100000 configura- 1.2 14 1.6 1.8

FIG. 13. 8 dependence of the Polyakov loop susceptibility ob-
“This definition of the gauge coupling has the same form as theained by the histogram method on af<& lattice with y?=4.0.
tree-level ong2.10). The circles denote the simulation point.
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T T T TABLE II. Results for B¢ and d3:/dy by the histogram
. ' method. The simulations are performed 8t (8s).
8 x6 lattice
100 £ 7=36 1 latice ¥ (BaBo) Be dBc /dy
84x4 2.0 (1.21250, 2.42500 1.714726) —0.008759)
2.1 (1.18350, 2.485365 1.7134225 —0.06716)
2.5 (1.07080, 2.67700 1.6906@36) —0.221982)
< 8% lattice 3.0 (0.95000, 2.85000 1.6470231) —0.333767)
s0 | > , | 4.0 (0.77000, 3.08000 1.5401848) —0.404979)
¥=20 8'x6 lattice
) 6.0 (0.55100, 3.30600 1.3456@59) —0.42G17)
7=3.8 8.0 (0.42500, 3.40000 1.19790447) —0.36§11)
16.0 (0.21875, 3.50000 0.8726%37) —0.207(36)
1 84x6 3.6 (0.92750, 3.33900 1.759438) 0.005912)
L 3.8 (0.90150, 3.42570 1.7565419) —0.053471)
01_7 1_'72 1_'74 170 4.0 (0.87750, 3.51000 1.7533%44) —0.08836)
5.0 (0.76900, 3.84500 1.7210226) —0.172361)
6.0 (0.68500, 4.11000 1.6753451) —0.250589)
FIG. 14. Large peaks of the Polyakov loop susceptibility ob- 8.0 (0.55550, 4.44400 1.5714@61) —0.308@82)
tained by the histogram method #t=2.0 on an §x 4 lattice, and 10.0 (0.46400, 4.64000 1.4686161) —0.319499
y?=3.6 and 3.8 on an“8< 6 lattice, respectively. 16.0 (0.30625, 4.90000 1.22922865) —0.253396)

where f,'s are fitting parameters, andgd/dy=f, at - , .
= Tﬁe range Ofs a?nd N are cho[sggn ;/uchl thatythe the dashed curves in Fig. 16, which are determined from the
. max

results of the B./dy are independent of the fitting range POSItions ofBc(y) and its slopes. As we see from the figure,

and the fitting function. We adopt 0.005 from the simula- the gz't'cw lines bend Sgongly $~1j1 andy~1.4g% for

tion point as the fitting range of and then,,,=3 for the the. X4 lattice, .andB71.75 andy~2.0 _for th? X6

final results, respectively. The bin size of the jackknife error@ttice. The bending points are the merging points of two

analysis is 1000. transition lines, the one for the phase transition characterized
The transition points in thg-y plane are shown in Fig by the second order transition of the transverse Polyakov

16, where the circles are the results fog=4 and the dia-. loop (4.2) and the other one by the first order transition that

monds are those fd¥s=6, respectively. The short lines on 'S INSensitive toNs.

these symbols denote the upper and lower bound of the slope _ _

of the transition curve. Two solid lines show the boundaries B. Calculation of B

of the region in which two kind of phases coexist. Note that  sjng the data given in Tables | and II, we can express

these boundary lines in Fig. 16 are obtained in the uNcoMe g function in terms ofs, wheres is given in Eq.(5.2.
pactified theory(Figure 10 is an illustration of Fig. 16 trans-

formed into theB,— B5 plane) The interpolation curves are 2.0 T T r T
8'x4 lattice, B,=1.2125, B,=2.425 18 | .
0.52 T T
16 | .
050 [ .
14T I
048 [ .
a 12 f A
0.46 ] ON,=4
1.0} ON;=6 ]
0.44 L - RSN
0-8 1 1 1 [}
1.0 2.0 3.0 4.0
Y
0.42 L L
10000 20000 30000 40000

FIG. 16. Phase transition points =4 (O) andNs=6 (<)
in the B-y plane. Two solid lines denote the boundaries of the
FIG. 15. Flip-flop in the history of the plaquette value region in which two kind of phases coexist. Compare the figure
=4.0 on an 8x4 lattice. with Fig. 10.

iterations
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0 T T T T T

-5

-15 1 1 1 1 1
10 12 14

S

16

FIG. 17.Eat as a function of determined on the transition lines
of Ns=4 (O) and N;=6 ([OJ). The figures show the physical
equivalence between the critical lattice systems.

Then it is straightforward to compufgy,, from Eq.(5.4). The

results are shown in Fig. 17, where the circles are obtained
on the critical line withNs=4 and the squares are those with

Ns=6. As we see from Fig. 17, we obtain the saphéunc-
tion for two differentNs (or as.). This implies that the lat-

tice system on two different critical lines describes the sam&arious explicit

physical system, and finitsls or equivalently finiteas ef-

PHYSICAL REVIEW D 62 105025

value R¢ along the line of the phase transition due to the
compactification. To verify this assumption we need an ana-
lytical consideration as we will do in the next subsection.

At this point we should emphasize that, in the region with
small g2, the transition is of first order and is not related to
the compactification. It implies that there is no reason to
assume that the compactification radiusRis near the first
order phase transition. In Fig. 18, the order of the transition
turns to be of first order arourgi 2= 0.95 for both cases of
Ns=4 and 6. Therefore, the reliable region in which the
compactification can be assumed to Rg, is g~ 2<0.95.
We, however, will assume in the next section, that the line of
R=R. exists, departing from the transition line around
g~ 2=0.95 and entering into the deconfinement phase. How
this line extends into the deconfinement phase cannot be
found out within the framework of the Monte Carlo simula-
tions; we need analytical considerations as we will do in the
next subsection. There we will discuss the theoretical inter-
pretation of our data, and extrapolate the lineRsf R into
the region of a smalleg?.

C. The € expansion, the power-law behavior and the
ultraviolet fixed pont

The power-law behavior of the gauge coupling is indeed
suggested by its canonical dimension, pit=(4—D)/2,
whereD is the number of the space-time dimensions. In the
computations in perturbation theory
[9,16,23, this behavior has been directly seen. However, the

fects may be regarded as negligibly small. In Fig. 18 weexplicit computations have been carried out basically within
showg~? defined in Eq.(5.3 obtained from the data. This the frame work of perturbation theory, and so the result may
data indicate thag~? depends only on the variab& sup- not be trustful because the theory is perturbatively
porting our assumption that the critical compactification ra-nonrenormalizable.

dius R¢ is a physical quantity. Moreover, Fig. 18 suggests The simplest way to see the power law behavior in per-
that g~ 2(s) is almost a liner function. Its theoretical inter- turbation theory may be in the dimensional regularization
pretation will be given in the next subsection. Note that thescheme, as we do it briefly. L&y be the dimensionless

result above obtained fq?,at does not verify the assumption
that the compactification radilgis kept fixed at the critical

1.2

0.8

-2

0.4

0.0 1 1 1 1 1
10 12 14

S

16

FIG. 18. The power-law behavior af 2 as a function ofs
determined on the transition lines B=4 (O) andN;=6 (OJ),
where the straight line is the one-loop lif&15.

gauge coupling in the pur8U(N¢) Yang-Mills theory in
D=4+ e dimensions. The3 function is given by{16,14]

dg3 2b 11
b _ g2+ 22 with b=——=Nc.

(5.7

Now to mimic the dimensionless gauge coupling defined in
the compactified theorfsee Eq.(5.3)], we introduce

95

(27RAP ©9

§=
whoseg function becomes

5The result of Refs[19,23 goes slightly beyond the perturbation
theory because, though a number of nontrivial truncations to define
an approximation scheme should be introduced, it is based on the
exact Wilson renormalization group approd&i].
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5 dg?  2b 5 the one-loop form of thegd function (5.14) is approximately
=A——=——(27RA)P4g*+... (5.9  correct. So we fit the function of with the form
dA 1642
_ Co
9, °=Ci+ —5s (5.15

11 ~
=— (2wRA)g*+--- for Nc=2, D=5.
1272
5.1 for the data ofg~? at the second order transition. We find
(5.10
that the best values fdd;=4 areC,;=—0.208(8) andC,

Equation(5.7) suggests that there could exist a nontrivial =9.84(17) withy?/df=1.4, and those foN;=6 areC,=
ultraviolet fixed point forgp , and as we have mentioned in —0.263(15) andC,=10.71(21) with y?/df=0.4, respec-
the Introduction, this possibility in the uncompactified theorytively. In Fig. 18 we compare the data fgr 2 with g;Z for
was ruled out by the numerical studies of Refs3-15. N =6. As we can see from Fig. 18, the one-loop ansatz
Note that if the fixed point is real, then it means that the(s 15 fits well to the data, and moreover, the coefficient in
redefined coupling) behaves as an asymptotically free cou-front of s on the right-hand side of E¢5.15 is close to the

pling, because one suggested in E€5.14). Since the data withis;=4 and 6
seem to lie on the same line, we also fit these data simulta-
~ 2b (2wRA)P4 neously. We obtainC;=—0.224(6) andC,=10.16(11)
" 1622 (D-4) —© as A, with x2/df=1.7, which is a reasonable value, implying that

p

(5.11) the fittedg_ *’s for different N5 agree with each other. The
fact that our data have a one-loop interpretation indicate that

Translated intayp, we obtain the assumption that the compactification radiidgs kept
fixed atR¢ along the line of the phase transition due to the
. 5—2 2b compactification may be correct.
9 = b4 5 asA—o, Next, to discriminate the logarithmic behavior we would
(2mRA) (D-4)16m (5.12 like to try to fit for the data org~? a function of the form
which is consistent with the fixed point value obtained from —2_ B>
=B+ Ins, 5.1
Eq. (5.7). g 1 2 (5.16

The form of the lattice8 function in perturbation theory
may be derived from thg function (5.10, if we know the and find thaB; = —0.836(14) and,=100.9(1.1) using the
relation between\ anda,. Since all the(four-dimensiongl  data forNs=4 and 6. This fit is not a good one because we
momenta in a lattice theory are restricted to the first Brillouinobtain y?/d f=33. Moreover, the coefficier, for the loga-
zone [ —(mla,)<p,=<(wla,)], the momentum cutoff is rithmic function(5.16 cannot be explained within the frame
|m/a,|. That iS,A222i=1(w/a4)2=(277/a4)2, which im-  work of perturbation theory. Namely, if the compactified

plies that theory on a lattice is simply a four-dimensional theory with
Kaluza-Klein excitations of a finite number then the coef-
2 ficient B, should be equal to (40/8) Sincen could vary

A= a_4' (5.13 between 1 andNs=6, perturbation theory for this assump-

tion would predict
So, the suggested one-loop lattiBefunction is

13<=B,=80, (5.17
O)=— 11 sqd’, (5.14  Wwhich clearly disagrees with the value B} obtained from
1272 fitting for the data. Since we have found that the one-loop

form of the power law behavior describes the data well, the
wheré we have useds=2mNs/é, R=Nsas/2m and £  higher order contributions, especially those coming from
=ay/as. nonrenormalizable operatopemember the naive continuum
theory is not renormalizable by power countingust be
D. The power law from the data suppressed, at least in the parameter region in our numerical
simulations.

It is the subject of the next section to investigate this
possibility, where we will assume that the theoretical func-
tion (5.195 can be used to draw the lines BE= R even in
the deconfining phase of the transverse Polyakov [do).

Now we would like to proceed with our numerical analy-
sis. Since the data in Fig. 18 suggest tgaf can be ap-
proximated by a linear function in the region we investigate

€So far there exists no perturbative computationggf in litera- VI. TOWARD A CONTINUUM LIMIT
ture. Note also that the one-loop coefficient[dﬁ) depends not

only on the regularization employed, but also on the definition of In the weak coupling regime, which is the most important
the gauge coupling. Our definition is given in E§.3). regime to investigate a continuum limit, the way to use the

105025-11
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-

(e}

1.0

transverse string tension as a physical quantity to give
physical scale is not available, because the phase transitio
due to the compactification in that regime disappears. One o
the central assumption in discussing the continuum limit in
this paper is that the one-loop functidf.15 can be ex-
tended into the weak coupling regime. Equivalently, we as-
sume that the8-function for a given compactification radius
R is given by

0.0 |

£

dg?

C, R
Bia= _a4d_a4: 4

ad

-1.0 |

3 (6.2

whereC, is given in Eq.(5.15. The assumption implies that
we can draw lines oR= const in the weak coupling regime.
On these lines the simulation paramefbecomes a func-
tion of y, which can be obtained from Table | and E(¢53)
and (5.15. So, given the lattice8 function (6.1) we now
know how to approach continuum limits. The object whose
scaling property should be investigated is the longitudinal

05 10 15
=In|B-D,|

FIG. 19. Scaling behavior of the Creutz ratio along the

. . ; : 4.0 line on an 8x4 lattice. The solid line is InY=2 In|3—D,|
lattice string tensiorno,; which we replace by the Creutz +1.2[see Eq(6.5)], whereD,=2.156(23).

ratio (4.1). As we have seen in Sec. IV, the longitudinal
Creutz ratio can be nonvanishing even in the deconfinin%
phase of the transverse Polyakov loop. In the following sub
sections we will investigate the scaling law of the longitudi-
nal string tension

ponds to the theoretical lir6.5. We see from Fig. 19 that
the scaling law(6.5) is well satisfied for 1.6 3=<1.8. Below
~1.5 we enter into the region of the strong coupling, and,
above~1.9, finite size effects due to smélla, presumably
start to become visible. So we may conclude that the data are
consistent with the scaling law6.5). This is an important
result, and is indeed the only result which supports the cor-
rectness of the assumption that the lattice spacing has a
physical scale even in the deconfining phase of the transverse
Polyakov loop and of our way how to extend the lines of

] o R=const into that phase; an evidence for the existence of the
We apply the scaling hypothesi6.2) to theas—0 limit  fyaq point suggested in the expansion.
with £ fixed at a certain value. As we have stated, we assume

that the one-loop functiof5.15 can be extended into the

Tlat™ O'physazzlz O'physaggz, (6.2

where we have assumed thgf, s should remain finite in the
continuum limit.

A. ag—0 limit

weak coupling regime. If we move along the line &f

= const, we change the compactification radfug o express
this more precisely, we first derive the scaling law for this
case. To this end, let us consider the linesRef const for
variousN5 in the parameter spacg(¢), where it is implic-
ity assumed that the constar®s andC, in Eq. (5.15 are
independent ofNs (the consistency of this assumption is
checked folNs=4 and 6 in Sec. ¥

2C,

3. (6.3

D,
B:_N_5§+D21 D1:_4C1, D2:

Sinceas=Rc/(27N5) andR¢ is assumed to be a physical
guantity, we obtain from Eq6.3)

a5 (Ng) "' (B—D). (6.9
Inserting Eq.(6.4) into Eq. (6.2), we find that
Ino = 2In| 8—D5| + const. (6.5

B. a;,/R—0 limit

Next, we would like to investigate the scaling behavior of
the longitudinal lattice string tension in theg, /R—0 limit
with R kept fixed. Since ZZR=Nsas, the lattice spacings
is kept fixed in this limit for a giverNs. Then, the string
tension should obey the scaling law

o> €2 or Ino,=2In &+ const. (6.6)
We compute on 8x N5 lattices withNg=2, 3, 4, 5, 6
and 8 the longitudinal Creutz ratjg(i,j) along the theoret-
ical line of R=const on whichN;=6 is critical. To deter-
mine this line, we used thé; andC, in Eq. (5.15 obtained
from the data ofNs=6. Note that for a giveNs the com-
pactification radiuR is Ngas/(27) = (Ns/6)R¢ . In Fig. 20,
we plot Inx(i,j) as a function of Ir£. If the slope of the
In x(i,)) is equal to 2, the scaling relation of E¢6.6) is
realized. In theN;=8 case, the results of the ordered start
and disordered start are split, and the longitudinal Creutz
ratio x(i,j) with largei andj of the ordered start fall dras-

Here, we use the value @f, obtained by fitting the data tically when we move from a largé to a small¢. This is in
for Ns=4 and 6 simultaneously. The result of this scalingaccord with our expectation, because the lattice system cor-
behavior is shown in Fig. 19, where we have used the 8responds to the uncompactified. In tNe=6 case(the com-
X4 lattice with y=2.0 as for Fig. 11. The bold line corre- pactification radiuR is equal toR¢) the longitudinal Creutz
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8'x3 lattice

1.0

b b
£ 20 I £
3.0 F 2ol — Iy=2ne-2 |
3.0 —— Ing=2Ing-2 3.0 —ox(22)
o—ox(2,2) = - -@ y(2.3)
& - -0y(2,3) o= —0 y(2.4)
-4.0 F o= —0x(2,4) E -4.0 a2 (3,3) E
- A x(3,3) +—=<(3:4)
-5.0 L L -5.0 L L
0.60 0.80 1.00 1.20 0.60 0.80 1.00 1.20
In§ In&
8°x4 lattice 8°x5 lattice
1.0 T T 1.0 T

Iny

et — |né=:)|n:;-2 -2
I L —oy(2, ] | —— Iny=2InE-
_3.0 a A -3.0 —o%(2,2)
G --0%(2,3)
o —oy(24)
40 } A= - A y(3,3) i
< ((3,4)
— x{4,4)
-5.0 L
0.60 1.00 1.20
8’ lattice
1.0 T T

Iny

=30 r — Ing=2Ing-2 A e
o—o%(2,2) il G ¥ —— Ing=2In&-2
i & - -3 x(2.3) s S ""i‘*:’“{m“ o —ox(2.2)
40} o —oxEd - 40 2ooned)
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<1 %(3,4) 20— -2 %(3,3)
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0.60 0.80 1.00 1.20 0.60 0.80 1.00 1.20
In& In§

FIG. 20. Scaling behavior of the Creutz ratio fde=2, 3, 4, 5, 6, and 8 measured on the line expected from the oneddapction
(5.15. The open symbols are the results of the ordered start and the filled symbols are those of the disordered start.

ratios also start to fall down around 4r-1.1. Therefore, the The results are also shown in Fig. 20. As we see from
lattice system above does not correspond to any fourthese figures, the longitudinal Creutz ratios no longer fall
dimensional theory, rather it describes a full five- drastically. Comparing the slope of these longitudinal Creutz
dimensional theory. Keeping this in mind, we continue toratios with the straight lines of the slope 2, we find that the
consider theN;=5, 4, 3, and 2 cases. longitudinal Creutz ratios foN;=3 decrease faster thar
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as¢ decreases. If this continues to smal&gi.e., sm_allera4, with £=const while changingd and Ng: We can simulate
we may conclude that foNs=3 the string tensionrgns  enlargingNs without changingNs. Since the compactifica-
decreases as, decreases so thatps vanishes in the tion radiusR is assumed to be a physical quantity, it remains
as/R—0 limit. _ unchanged during the transformation.

As we have observed, the slope of the Creutz ratios be- consequently, the scaling behavior of the Creutz ratios
comes milder aR decreases. This tendency of the milder-gy,gied in Fig. 20 can be reinterpreted as the scaling behavior
becoming slope with decreasiiis a real effect and not an 5j5ng 4 line with¢ and R kept fixed, where the scaling law
effect of a finite Ns, at leastNs=4 or equivalentlyR  gnropriate for this limiting process is given in E@.5):
=(2/3)Rc, which we may conclude from the fact that our the yertical axis I in Fig. 20 should be replaced by
data ghow that the cr|t|c§ll lattice systems V\N_Igl_=6 a_md 4 In|3—D,|+In|N5/D,| and the straight line should be under-
describe the same physical system. Some finite size effeclgyqq as Iy=2 In|8—D,|+const, where we have used Eq.
may be present in the case N§=3 and 2 in Fig. 20. Nev- (g 3 \we arrive at the same conclusion as in tgR—0
ertheless, the tendency can be seen for these cases, t00. Itisa \which we do not repeat here again. But as we have
this tendency of the milder-becoming slope that suggests thgieq there, the tendency of the milder-becoming slope with
existence of a continuum theory with a nonvanishing St“ngdecreasingR is a real effect, at least f®®=(2/3)Rc. This is
tension. If we assume that in the present case of setting &, pere, too, because our data show that the critical lattice
longitudinal Creutz ratio starts to scale according to the Scaléystems WittNs=4 and 6 describe the same physical system
ing law (6.6) from Ns=2 on, we obtain the maximal com- ¢4 that the above mentioned transformation at least between
pactification radius theNs=4 and 6 lines is trustful. The simulat®&— o limit

we have considered here should be regarded as a prediction
Re 1 (6.7) of the real limit, at least foR=(2/3)R.

RM~ _~
10\/0'phys

below which the compactified theory with a nonvanishing

string tension could exist nonperturbatively. Our motivation in this paper has been to see, within the
We would like to notice that, though the qualitative nature ., mework of the lattice gauge theory, whether or not the
of the milder-becoming slope is real, the scaling behavior o, hrivial fixed point found in thes-expansion in the con-

the longitudinal Qreutz r:_atio itself is sensitjve to thg choicesinum theory of the pur&U(2) Yang-Mills theory in five
of the extrapolation functiofb.19 that describes the lines of imensions is spurious in the case that the fifth dimension is
R=const. Itis therefore clear th_at for a more deflnlte_ CON“compactified. We have used intensively anisotropic lattices
plugon more refined analyses with a lager size of lattice ar¢, ake into account the compactification. We have found
indispensable. that the compactification changes the nature of the phase
transition: A second order phase transition, which does not
C. “Simulated” Ns—co limit exist in the uncompactified case, begins to occur, and turns

To consider theNs— limit with R=const, we have to (0 be of first order at a certain point. o
enlarge the size of our lattice. Instead of enlarging the size, Under the assumption that the compactification radius
however, we can simulate the limit with the data that wef€mains constant fixed at the critical valgg along the criti-
have already at hand. We would like to argue below that th&al lines of the phase transition due to the compactification,
second limiting processa,/R—0 with as fixed at anas. ~ We have computed the lattigfunction B, and found that
(see Fig. 19 can be interpreted as amy,as—0 limiting g, as a function ofs, obtained from the critical line ol
process withR fixed. (as—0 with R fixed is the same as =4 and 6, is the sam@ee Fig. 17. We have also found that
N5— o with R fixed) the gauge coupling on these critical lines is the sdsee

We have been assuming that the theoretical functiorFig. 18. From these observations we have concluded that the
given in Eq.(6.3) describes a set of the lines Bi=const in  critical lattice system witiNs=4 and 6 describes the same
the B-¢ plane for differentNs. All lines so obtained are physical system, and we are led to the assumption that this is
assumed to be physically equivalent: To each point on a linethe case for alNs.
there exists an equivalent point on each line. It follows then As we can see from Fig. 18, the power-law running of the
that all the points on a line described by K6.3) for a given  gauge couplingthe solid ling is consistent with the data,
N5 can be transformed into a line that is parallel to ghaxis ~ which has a simple one-loop interpretation. This is the fact
in the B-¢ plane. The mapping can be easily found, becauséhat supports the correctness of the assumption, at least for
the values of the gauge coupliggon the physically equiva- Ns=4 and 6, that the compactification radiRsemains con-
lent points should be the same. Sin8adoes not change if stant fixed at the critical valuB: along the critical lines of
the ratio&/Ns is fixed[see Eq(6.3)], the value ofg does not the phase transition due to the compactification.
change if we move along a line parallel to thexis (see Eq. At this point it is the natural thing to extend our findings
(5.3)]. That is, to find a set of physically equivalent points into the deconfining phase of the transverse Polyakov loop:
we just have to move parallel to tlieaxis. Therefore, mov- We have assumed that the lattice spacing has a physical scale
ing along a line described by E(6.3) for a givenNs; can be  even in the deconfining phase and the one-loop ariSat5)
assumed to be physically equivalent to moving along a lineean be used to draw the linesRf const in that regime. The

VIl. SUMMARY AND CONCLUSION
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investigation of the scaling law6.5 for the longitudinal string tension could exist nonperturbatively if the compacti-
Creutz ratio(4.1) shown in Fig. 19 supports the correctnessfication radiusR is smaller than the maximal compactifica-
of this assumption. At this stage, the existence of the nontion radiusRy, . Our estimate iRy ~Rc/3~0.1N 0 pnys
trivial fixed point suggested in the expansion might be It is clear that to make our interpretation more solid, we
evident. need not only refined and detailed numerical analyses but
We have investigated the scaling behavior of the longitu-also analytical investigations. We hope that further studies
dinal Creutz ratio in the,/R—0 limit with R kept fixed,  will clarify the problems on the quantum realization of the
and found that the slope with which the Creutz ratios fall inold Kaluza-Klein idea.
thea,/R—0 limit becomes milder aR decrease¢see Fig.
20). In the case oNs=3 and 2 in Fig. 20, there are may be
some finite size effects, but the tendency of the milder-
becoming slope of the Creutz ratio should be real in these This work is supported by the Grants-in-Aid for Scientific
cases, too. It is this tendency that suggests the existence ofResearch from the Japan Society for the Promotion of Sci-
continuum theory with a nonvanishing string tension. Fromence(JSP$. We would like to thank for useful discussions
this behavior of the Creutz ratio, we are led to the interpre-T. Izubuchi, K. Kanaya, H. Nakano, H. So, T. Suzuki and H.
tation that the compactified theory having a nonvanishinglerao.
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